

SCARAB:

ABSOLUTE CALIBRATION & INTER-COMPARISON WITH CERES

MEGHA-TROPIQUES MISSION

Presenter:

T. TREMAS, CNES

Co-author:

O. AZNAY, C-S

Earth Radiation Budget Workshop, 18-21 October 2016, Reading, UK

1

MEGHA-TROPIQUES MISSION

Mission Study of the atmosphere in the

intertropical zone

Launch date 12 October 2011

Partners CNES, ISRO

Instruments MADRAS, SAPHIR, SCARAB

Localisation Equatorial orbit (inclined 20°) at an

altitude of 867 km

Mission 3 years, extended a further 2

lifetime years

SCARAB SPECTRAL BANDS

SCARAB ACQUISITION MODES

Basic equations:

$$N_{k} = G_{k} L_{k}^{f}$$
Where $L_{k}^{f} = \int L(\lambda) r_{k}(\lambda) d\lambda$

Only filtered radiances are recorded (filtered by all the channel : mirror, filter, ...)

When N_k and G_k are known, L_k^f is deduced

When N_k and L_k^f are known, G_k is deduced

▶ principle of the calibration

Determination of A':

A' is used to subtract the SW component of the signal acquired on channel-3. This SW component is measured on channel-2, similar to channel-3 but not fully identical:

$$L_{lw}^{f} = L_{T}^{f} - A' L_{sw}^{f}$$

A' can be expressed as the ratio between Ch3 and Ch2 pointing at a « pure » SW source:

A'=
$$\int L_{sw}(\lambda) r_3(\lambda) d \lambda / \int L_{sw}(\lambda) r_2(\lambda) d \lambda$$

QUICK REVIEW OF CERES

THE CERES (FM2) INSTRUMENT ONBOARD TERRA

Orbits	705 km altitude, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (PM-1), sun-synchronous, near-polar; 350 km altitude, 35° inclination (TRMM)			
Spectral Channels	Solar Reflected Radiation (Shortwave): 0.3 - 5.0 μm Window: 8 - 12 μm Total: 0.3 to > 100 μm			
Swath Dimensions	Limb to limb			
Angular Sampling	Cross-track scan and 360° azimuth biaxial scan			
Spatial Resolution	20 km at nadir (10 km for TRMM)			
Mass	45 kg			
Duty Cycle	100%			
Power	45 W			
Data Rate	10 kbps			
Size	60 x 60 x 70 cm (deployed)			
Design Life	6 years			

INTER-SENSOR COMPARISON: FIRST APPROACH

INTRODUCTION – ERROR BUDGET

ScaRaB-SW error budget @ $1\sigma \approx 1,6\%$

Items	Value	Туре	
Short wave calibration (sphere)	3% @2σ	Biais	1.5%
Error on spectral response		Biais	0.4%
Thermal gain correction	0.08%/°	Random	0.03%
	dT= 0.04° @1σ 20% of the thermal		
Thermal leak correction	leak@1σ	Random	0.04%
Location	0.06°@1σ	Random	0.4%
Budget at 1 sigma			1.6%

Rosak et al., 2012

CERES-FM2-SW error budget @ $1\sigma \approx 1\%$

		Bias errors of unknown sign (W m ⁻²)				
Source	Incoming solar	Outgoing SW	Outgoing LW	Net incoming	Comment	
Total solar irradiance	±0.2	0	0	±0.2	Absolute calibration (95% confidence)	
Filtered radiance	0	±2.0	±2.4 (N) ±5.0 (D)	±4.2	Absolute calibration (95% confidence)	
Unfiltered radiance	0	±0.5	±0.25 (N) ±0.45 (D)	±1.0	Instrument spectral response function Unfiltering algorithm	

Loeb et al., 2009 [CERES-FM2 error budget @2σ]

They showed that their error budget was consistent with the climate monitoring.

CERES PIXELS IN SCARAB GEOMETRY

CO-LOCATION AREA

INTER-SENSOR COMPARISON: SUCCESSIVE APPROACHES

GENERAL STATEMENT

Any time a CERES-ScaRaB pixels comparison is performed, the criterion is :

We use the following metric in our results =>

$$\frac{ScaRaB - CERES}{mean(CERES)}$$
 (in %)

FIRST APPROACH

The average of CERES pixels of which the center is located in a ScaRaB foot-print is compared to this ScaRaB pixel.

Advantage:

A huge number of pixels are considered.

Drawbacks:

- The shape of CERES pixel is ignored.
- CERES pixels can widely overflow the ScaRaB pixel.

SECOND AND THIRD APPROACHES

CERES REAL FOOTPRINT

In our first colocation approach we considered a **circular** CERES *footprint* with a **20 km** diameter (at Nadir). It was a good approximation. In order to improve our results, we need to consider the real CERES *footprint*.

IMPROVEMENT OF THE CO-LOCATION METHOD

To improve our colocation method, we considered three kinds of improvements:

- 1. We consider the **real** CERES *footprint* (left caption).
- 2. The **entire** CERES footprint (cyan) must be contained in the ScaRaB footprint (left caption).
- 3. We **only** considered ScaRaB pixels which present radiometric homogeneity (right caption) neighbors heterogeneity (red) is lower than 10 %.

SECOND APPROACH: RESULTS FOR SW

SECOND APPROACH: RESULTS FOR LW

SUMMARY OF THE RESULTS

-	-		-
-	41		-
	.,		•
_	v	_	_

Foo	otprint	Circle	Ellipsis (1+2)	Homogeneous ellipsis (1+2+3)
AT (0/)	SW	2.43 ± 13.1 (2173)	4.02 ± 5.52 (168)	5.24 ± 3.36 (53)
ΔL (%)	LW	- 0.8 ± 3.34 (4462)	-0.95 ± 1.45 (207)	-0.91 ± 1.38 (54)

2015

Foo	otprint	Circle	Ellipsis (1+2)	Homogeneous ellipsis (1+2+3)
ΔL (%)	SW	3.03 ± 17.0 (373)	1.51 ± 9.51 (128)	4.58 ± 5.16 (29)
	LW	-0.94 ± 3.33 (787)	-1.08 ± 1.87 (138)	-1.05 ± 1.16 (29)

- => The different improvements have a benefit impact on the ScaRaB/CERES inter-comparison.
- => The improvement defined in case (1+2+3) present the best results (lowest dispersion).
- => The more the criteria are restrictive (1+2+3) the less we have colocation points.
- => We notice a deterioration of the results from 2012 and 2015 for SW (+1.14%) and for LW (+0.08%).

CONCLUSION AND PERSPECTIVE

- ⇒ All the SCARAB radiometric parameters used to provide products are in accordance with specification.
- ⇒ The vicarious calibration of channel-1 (using desert sites) allows a monitoring with a precision of about 1.3%;
- ⇒ The inter-sensor calibration activity between CERES and SCARAB leads to the following results:
 - 1. "good" agreement between two satellites: $\approx 5.0\%$ in the SW and $\approx 1\%$ in the LW.
 - 2. Taking account of the real CERES *footprint* improves inter-sensor comparison results.
 - Best results are obtained using homogeneous ScaRaB pixel containing the entire real CERES footprint.
 - 4. We notice a deterioration of the results from 2012 and 2015 for SW (+1.14%) and for LW (+0.08%).

LAST CAMPAIGN: UNCONSOLIDATED RESULTS FOR LW

LAST CAMPAIGN: UNCONSOLIDATED RESULTS FOR SW

